New Hampshire Volunteer Lake Assessment Program ## 2003 Biennial Report for Skatutakee Lake Harrisville NHDES Water Division Watershed Management Bureau 29 Hazen Drive Concord, NH 03301 ## OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **LAKE SKATUTAKEE**, **HARRISVILLE**, the program coordinators have made the following observations and recommendations: As you are aware, the Franklin Pierce College (FPC) satellite VLAP laboratory was not able analyze samples during the 2003 sampling season. This was largely due to personnel and budget issues at the college. Although the FPC laboratory was not able to analyze samples, staff at FPC continued to lend out sampling equipment to volunteer monitors in this areas. This was truly a cooperative effort between DES, FPC, and the volunteer monitors in this region. We want to thank you again for bearing with us this season. Also, we want to assure you that DES and FPC are working together to get the FPC lab up and running for the 2004 sampling season. We will keep you posted on the status of the laboratory as the sampling season approaches. We would like to encourage your monitoring group to participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring the lakes and ponds for the presence of exotic weeds. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from June through September. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watchers Kit, volunteers look for any species that are of suspicion. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic, a biologist will visit the site to determine the extent of the problem and to formulate a plan of action to control the nuisance infestation. If you would like to help protect your lake or pond from exotic plants, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers web page at www.des.state.nh.us/wmb/exoticspecies. #### FIGURE INTERPRETATION Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake/pond has been monitored through the program. Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 mg/m³. The current year data (the top graph) show that the chlorophyll-a concentration *decreased slightly* from June to September. The chlorophyll-a concentration on both sampling events was *less than* the state mean. Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual chlorophyll-a concentration has **not significantly changed** since monitoring began in **1989**. Specifically, the chlorophyll-a concentration has **fluctuated**, but has not continually increased or continually decreased, and has generally been **less than** the state median since monitoring began. (Note: Please refer to Appendix E for the detailed statistical analysis explanation and data print out.) While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or inlake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and lake/pond quality. Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake/pond transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake/pond has been monitored through the program. Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters. The current year data (the top graph) show that the in-lake transparency *increased* from June to September. The transparency in June and July was *less than* the state mean while the transparency in September was *greater than* the state mean. It is worthy to note that the transparency measured in September was the second-best transparency that has been measured since monitoring began! The historical data (the bottom graph) show that the 2003 mean transparency is *approximately equal to* the state mean. Overall, the statistical analysis of the historical data show that the mean annual in-lake transparency has **significantly increased** since monitoring began. Specifically, the transparency has **increased** (meaning **improved**) on average by **approximately 1.5 percent** per sampling season during the sampling period **1989** to **2003**. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.) We hope this trend continues! Typically, high intensity rainfall causes erosion of sediments into lakes/ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake/pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake/pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request. Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake/pond has joined the program. Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The current year data for the epilimnion (the top inset graph) and the hypolimnion (the bottom inset graph) show that the phosphorus concentration *increased slightly* from June to September. The historical data show that the 2003 mean epilimnetic phosphorus concentration is *approximately equal to* the state median. The historical data show that the 2003 mean hypolimnetic phosphorus concentration is **slightly less than** the state median. Overall, the statistical analysis of the historical data show that the phosphorus concentration in the epilimnion (upper layer) and the hypolimnion (lower layer) has **not significantly changed** since monitoring began in **1989**. Specifically, the phosphorus concentration in the epilimnion and hypolimnion has **fluctuated**, but has not continually increased or decreased since monitoring began. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.) One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands. #### TABLE INTERPRETATION #### > Table 2: Phytoplankton Table 2 (Appendix B) lists the current and historic phytoplankton species observed in the lake/pond. The dominant phytoplankton species observed on the June sampling event were *Tabellaria*, *Asterionella*, and *Rhizosolenia*, which are all **diatoms**. Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds. #### > Table 2: Cyanobacteria (Blue-green algae) On the September sampling event, the dominant phytoplankton species observed was the cyanobacterium Anabaena. This species, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans. Cyanobacteria can reach nuisance levels when excessive nutrients and favorable environmental conditions occur. During September of 2003, a few lakes and ponds in the southern portion of the state experienced cyanobacteria blooms. This was likely due to nutrient loading to these waterbodies. As mentioned previously, many weeks during the Spring and Summer of 2003 were rainy, which likely resulted in a large amount of nutrient loading to surface waters. The presence of cyanobacteria serves as a reminder of the lake's/pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading into the lake/pond by eliminating fertilizer use on lawns, keeping the lake/pond shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads. In addition, residents should also observe the lake/pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria (bluegreen algae) have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the lake/pond. If a fall bloom occurs, please contact the VLAP Coordinator. #### > Table 4: pH Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.5**, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the deep spot this season ranged from **6.19** in the hypolimnion to **6.31** in the epilimnion, which means that the water is **slightly acidic.** As organic material is decomposed near the lake bottom, acidic by-products are typically produced which likely explains the higher acidity (meaning lower pH) in the hypolimnion. Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase lake/pond pH. #### > Table 5: Acid Neutralizing Capacity Table 5 (Appendix B) presents the current year and historic epilimnetic ANC for each year the lake/pond has been monitored through VLAP. Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the lake. The mean ANC value for New Hampshire's lakes and ponds is **6.7 mg/L**, which indicates that many lakes and ponds in the state are "highly sensitive" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) was **1.60 mg/L**, which is **much less than** the state mean. Specifically, this indicates that the lake is **critically sensitive** acidic inputs (such as acid precipitation). #### > Table 6: Conductivity Table 6 (Appendix B) presents the current and historic conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. The mean conductivity value for New Hampshire's lakes and ponds is **62.1 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The conductivity in the lake/pond is relatively **low** and **less than** the state mean. However, the conductivity has **gradually increased** in the lake/pond and inlets since monitoring began. Typically, sources of increased conductivity are due to human activity. These activities include septic systems that fail and leak leachate into the groundwater (and eventually into the tributaries and the lake/pond), agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron deposits in bedrock, can influence conductivity. We recommend that your monitoring group conduct stream surveys and storm event sampling along the inlet(s) with elevated conductivity so that we can determine what may be causing the increases. For a detailed explanation on how to conduct rain event and stream surveys, please refer to the 2002 VLAP Annual Report "Special Topic Article", or contact the VLAP Coordinator. #### > Table 8: Total Phosphorus Table 8 (Appendix B) presents the current year and historic total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The Goose Brook, North Brook, and the Outlet were sampled for phosphorus this season. The phosphorus concentrations were **12 ug/L or less**, which is relatively *low*. We hope this continues. #### > Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2003 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was **high** at all depths sampled at the deep spot of the lake/pond on the June and September sampling events. Typically, shallow lakes and ponds that are not deep enough to stratify into more than one or two layers will have relatively high amounts of oxygen at all depths. This is due to continual lake mixing and diffusion of oxygen into the bottom waters induced by wind and wave action. On the June sampling event, the dissolved oxygen concentration was **greater than 100 percent** saturation at **2.0 and 3.0** meters. Layers of algae can raise the dissolved oxygen in the water column since oxygen is a by-product of photosynthesis. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. #### > Table 11: Turbidity Table 11 (Appendix B) lists the current year and historic data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. The turbidity of the inlet and deep spot samples was relatively **low** this season. We hope this continues. #### > Table 12: Bacteria (E.coli) Table 12 lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful disease-causing organisms may also be present. The *E.coli* concentration was **low** at each of the sites tested this season. We hope this trend continues! If you are concerned about bacteria levels in any location, you may want to conduct bacteria testing on a weekend during heavy beach use or after a rain event. Since *E.coli* die quickly in cool pond waters, testing is most accurate and most representative of the health risk to bathers when the source (humans, animals, or waterfowl) is present. Most lakes and ponds typically have 10 or fewer counts of *E.coli* per 100 mL in open waters. #### DATA QUALITY ASSURANCE AND CONTROL #### **Annual Assessment Audit:** During the annual visit to your lake/pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors are not following the proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work! #### **NOTES** ➤ Monitor's Note (6/25/03): Some drifting occurred while at deep Spot. (7/29/03): No in-lake samples taken, only secchi value recorded due to equipment pick- up problem at FPC. #### **USEFUL RESOURCES** Acid Deposition Impacting New Hampshire's Ecosystems, ARD-32, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/ard/ard-32.htm. Aquarium Plants and Animals: Don't leave them stranded. Informational pamphlet sponsored by NH Fish and Game, Aquaculture Education and Research Center, and NHDES (603) 271-3505. Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES-WD 97-8, NHDES Booklet, (603) 271-3503. A Boater's Guide to Cleaner Water, NHDES pamphlet, (603) 271-3503. Camp Road Maintenance Manual: A Guide for Landowners. KennebecSoil and Water Conservation District, 1992, (207) 287-3901. Comprehensive Shoreland Protection Act, RSA 483-B, WD-SP-5, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-5.htm. Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm. Erosion Control for Construction in the Protected Shoreland Buffer Zone, WD-SP-1, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-1.htm Impacts of Development Upon Stormwater Runoff, WD-WQE-7, NHDES Fact Sheet, (603) 271-3503, or www.des.state.nh.us/factsheets/wqe/wqe-7.htm Iron Bacteria in Surface Water, WD-BB-18, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-18.htm Is it Safe to Eat the Fish We Catch? Mercury and Other Pollutants in Fish, NH Department of Health and Human Services pamphlet, 1-800-852-3345, ext. 4664. Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, WD-BB-9, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-9.htm. Management of Canada Geese in Suburban Areas: A Guide to the Basics, Draft Report, NJ Department of Environmental Protection Division of Watershed Management, March 2001, www.state.nj.us/dep/watershedmgt/DOCS/BMP_DOCS/Goosedraft.pdf. Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, WD-SP-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-2.htm. Road Salt and Water Quality, WD-WMB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm. Sand Dumping - Beach Construction, WD-BB-15, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-15.htm. Swimmers Itch, WD-BB-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-2.htm. Through the Looking Glass: A Field Guide to Aquatic Plants. North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org. Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, WD-BB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-4.htm. ## APPENDIX A **GRAPHS** ### Lake Skatutakee, Harrisville ## Lake Skatutakee, Harrisville